P P SAVANI UNIVERSITY

Fourth Semester of B. Tech. Examination December 2022

SECH2080 MASSS TRANSFER OPERATION I

05.12.2022, Saturday

Instructions:

Time: 01:00 p.m. To 3:30 p.m.

Maximum Marks: 60

	estion paper comprises two sections.			
	I and II must be attempted in same answer sheet.			
	suitable assumptions and draw neat figures wherever required.			
4. 050 01	SECTION – I			
Q-1	Answer any five of the Following: (MCQ/Short Question/Fill in the Blanks)	[05]	co	BTL
(i)	Fick's law is given by the formula	[05]	CO 1	
(1)			1	1
			,	
(ii)	c) $N_b = -3 D_b c dC_b/dx$ d) $N_b = -4 D_b c dC_b/dx$		1	
(11)	Consider loss of ethanol vapor by diffusion from a half-filled open test tube.		1	1
	At what point in the diffusion path will the contribution of the bulk flow term to the molar flux be maximum?			
	a) At the liquid-gas interface b) In the bulk liquid			
	c) In the bulk gas d) None of the mentioned			
(iii)	Prandtl number is given by	TOTAL TOTAL	1	
(111)	a) V/α b) 2 V/α c) 3 V/α d) 4 V/α	rovible.	1	1
(iv)	Sherwood number is given by		1	4
(14)	a) 3/2 h m L/D b) ½ h m L/Dc) 3 h m L/D d) h m L/D		1	1
(v)	Sherwood number is a function of		4	1
(*)	a) Lewis number and Reynolds number		1	1
	b) Prandtl number and Lewis number			
	c) Reynolds number and Schmidt number			
	d) Schmidt number and Lewis number			
(vi)	The real driving force of the mass transfer is		4	4
(VI)	a) Chemical potential b) Physical potential c) Pressure gradient d)		1	1
	Concentration gradient			
(vii)	In which of the following conditions mass transfer will occur spontaneously?		4	
(VII)			1	1
	C and z is concentration and distance respectively.			
Q-2(a)	a) dC/dz>0 b) dC/dz<0 c) dC/dz=0 d) None of the Mentioned	[OF]	0	
	Name methods of conducting mass transfer operations, and Define molecular diffusion	[05]	2	3
Q-2(b)	Starting from Fick's first law of diffusion for unidirectional binary gas	[05]	1	3
	phase, derive the equation to calculate N _A for steady state molecular diffusion			
	of Athrough non-diffusing B			
	OR	******		
Q-2(a)	State the unit of diffusivity and State the unit of diffusivity	[05]	1	3
Q-2(b)	State and discuss the types of diffusion with suitable example.	[05]	2	3
Q-3(a)	Define J factors for heat and mass transfer. State its applications and limitations		2	3
Q-3 (b)	Describe a method to estimate the diffusivity of a volatile solvent into air.	[05]	2	3
	OR			
Q-3 (a)	The molar composition of a gas mixture at 273 K and 1.5 * 10 5 Pa is: 0 2 7%, CO 10%, CO $_2$ 15%, N $_2$ 68%	[05]	2	4
	Determine			

	a) the composition in weight percent				
	b) average molecular weight of the gas mixture				
	c) density of gas mixture				
	d) partial pressure of O 2				
Q-3(b)	1	[05]	1	3	
Q-4	Attempt any one/two.	[05]			
(i)	Explain Reynolds Analogy and Chilton – Colburn Analogy		3	4	
(ii)	A stream of air at 100 kPa pressure and 300 K is flowing on the top surface of		3	4	
	a thinflat sheet of solid naphthalene of length 0.2 m with a velocity of 20				
	m/sec. The otherdata are: Mass diffusivity of naphthalene vapor in air = 6 *				
	10-6 m ² /sec				
	Kinematic viscosity of air = 1.5 * 10 -5 m ² .sec				
	Concentration of naphthalene at the air-solid naphthalene interface = 1 * 10 -				
	5kmol/m³Calculate				
	(a) the overage mass transfer coefficient over the flat plate		-		
	(b) the rate of loss of naphthalene from the surface per unit width Note: For heat transfer over a flat plate, convective heat transfer coefficient			2.75	-
	forlaminar flow can be calculated by the equation you may use analogy		-	11:	
	between mass and heat transfer.				
	SECTION - II				
Q-1	Answer any five of the Following: (MCQ/Short Question/Fill in the Blanks)	[OF]			
(i)	Direct dryers are	[05]	4		
	a) Batch driers b) Continuous driers c) Semi-batch driers d) None of the		4	1	
	mentioned				
(ii)	For a batch drying, the wet surface should be more compare to dry surface.		4	1	
	a) True b) False		4	1	
(iii)	Humidification is a		4	1	
	a) Mass transfer operation b) Heat transfer operation			-	
	c) Simultaneous heat and mass transfer d) Neither mass and heat transfer				
	operation				
(iv)	By differencing the temperature, heat added or removed is		4	1	
	a) Sensible heat b) Latent heat				
	c) Heat of vaporization d) None of the mentioned				
(v)	The humidity is represented in		4	1	
	a) Humidity chart b) Psychometric chart				
	c) Psychometric chart or humidity chart d) All of the mentioned				
(vi)	Partial pressure equals vapour pressure if it is		4	1	
	a) Saturated b) Unsaturated				
(!!)	c) Isothermal d) None of the mentioned				
(vii)	The system is unsaturated if partial pressure equilibrium vapour		4	1	
	pressure.				
Q - 2 (a)	a) Less than b) Greater than c) Equals to d) All of the mentioned				
Q-2(a) Q-2(b)	Explain the term Humidification and dehumidification with suitable example	[05]	5	3	
Q-2(b)	Explain Fluidized bed Dryer in detail with appropriate diagrams	[05]	5	3	
Q - 2 (a)	OR Evolain Tray Dryon in detail with appropriate discounting				
Q - 2 (b)	Explain Tray Dryer in detail with appropriate diagrams	[05]	6	3	
Q-3(a)	Explain Cooling Tower, its working principle, construction and operation Discuss agitated batch crystallizer with neat sketch	[05]	6	3	
Q - 3 (b)	Define Magma. And super saturation	[05]	4	3	
- (-)	OR	[05]	4	3	
Q - 3 (a)	Discuss the concept with principle of crystallization	[OF]	-	2	
		[05]	5	3	

Q - 3 (b)	Explain construction and working of Swenson-Walker Crystallizer with the	[05]	5	3
	help of a neat sketch			
Q - 4	Attempt any one/two.	[05]		
(i)	Discuss the analogy among Heat, momentum and mass transfer.		6	3
(ii)	Explain Meir's super saturation theory of crystallization with neat sketch		6	3

CO

: Course Outcome Number BTL : Blooms Taxonomy Level

Level of Bloom's Revised Taxonomy in Assessment

1: Remember		
	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create